CHEMORADIOThERAPY AFTER SURGERY COMPARED WITH SURGERY ALONE FOR ADENOCARCINOMA OF THE STOMACH OR GASTROESOPHAGEAL JUNCTION

JOHN S. MACDONALD, M.D., STEPHEN R. SMALLEY, M.D., JACQUELINE BENDETTI, PH.D., SCOTT A. HUNDAHL, M.D., NORMAN C. ESTES, M.D., GRANT N. STEMMERMANN, M.D., DANIEL G. HALLER, M.D., JAFFER A. AJANI, M.D., LEONARD L. GUNDERSON, M.D., J. MILBURN JESSUP, M.D., AND JAMES A. MARTENSON, M.D.

ABSTRACT

Background Surgical resection of adenocarcinoma of the stomach is curative in less than 40 percent of cases. We investigated the effect of surgery plus postoperative (adjuvant) chemoradiotherapy on the survival of patients with resectable adenocarcinoma of the stomach or gastroesophageal junction.

Methods A total of 556 patients with resected adenocarcinoma of the stomach or gastroesophageal junction were randomly assigned to surgery plus postoperative chemoradiotherapy or surgery alone. The adjuvant treatment consisted of 425 mg of fluorouracil per square meter of body-surface area per day, plus 20 mg of leucovorin per square meter per day, for five days, followed by 4500 cGy of radiation at 180 cGy per day, given five days per week for five weeks, with modified doses of fluorouracil and leucovorin on the first four and the last three days of radiotherapy. One month after the completion of radiotherapy, two five-day cycles of fluorouracil (425 mg per square meter per day) plus leucovorin (20 mg per square meter per day) were given one month apart.

Results The median overall survival in the surgery-alone group was 27 months, as compared with 36 months in the chemoradiotherapy group; the hazard ratio for death was 1.35 (95 percent confidence interval, 1.09 to 1.66; P=0.005). The hazard ratio for relapse was 1.52 (95 percent confidence interval, 1.23 to 1.86; P<0.001). Three patients (1 percent) died from toxic effects of the chemoradiotherapy; grade 3 toxic effects occurred in 41 percent of the patients in the chemoradiotherapy group, and grade 4 toxic effects occurred in 32 percent.

Conclusions Postoperative chemoradiotherapy should be considered for all patients at high risk for recurrence of adenocarcinoma of the stomach or gastroesophageal junction who have undergone curative resection. (N Engl J Med 2001;345:725-30.)

Copyright © 2001 Massachusetts Medical Society.

The curative treatment of stomach cancer requires gastric resection. However, most patients are not cured by this surgery. A review of data from the National Cancer Data Base on 50,169 patients in the United States who underwent gastrectomy between 1985 and 1996 found a 10-year survival rate of 65 percent among patients with stage IA disease (tumor confined to the gastric mucosa), but the 10-year survival rates among those with more advanced disease ranged from 3 percent to 42 percent, depending on the extent of disease.

The high rate of relapse after resection makes it important to consider adjuvant treatment for patients with stomach cancer. However, adjuvant chemotherapy has not resulted in higher survival rates than surgery alone.

Local or regional recurrence in the gastric or tumor bed, the anastomosis, or regional lymph nodes occurs in 40 to 65 percent of patients after gastric resection with curative intent. The frequency of such relapses makes regional radiation an attractive possibility for adjuvant therapy. A phase 3 trial found clinically limited but statistically significant improvement (P = 0.009) in survival after preoperative regional radiotherapy in patients with cancer of the gastric cardia. Small phase 3 trials have suggested that survival is improved after postoperative radiation, with or without fluorouracil, and after intraoperative radiation.

Phase 3 trials have found that 12 to 20 percent of patients with residual or locally unresectable gastric cancer are long-term survivors after treatment with radiation plus fluorouracil. We undertook a study to determine the efficacy of chemoradiotherapy in patients with resected gastric cancer. The trial was initiated in 1991 to compare surgery followed by fluorouracil plus irradiation of the gastric bed and regional lymph nodes with surgery alone.

METHODS

Eligibility The eligibility criteria included histologically confirmed adenocarcinoma of the stomach or gastroesophageal junction; complete resection of the neoplasm, defined as resection performed with curative intent and resulting in resection of all tumor with the margins of the resection testing negative for carcinoma; a classification of the resected adenocarcinoma of the stomach or gastroesophageal junction as stage IB through IVM0 according to the 1988 staging criteria of the American Joint Commission on Can-
more than 4000 cGy of radiation. Fluorouracil (400 mg per square
the heart representing 30 percent of the cardiac volume received
kidney was spared from the field of radiation, and no portion of
than 60 percent of the hepatic volume was exposed to more than
Exclusion of the splenic nodes was allowed in patients with antral
dial and paraesophageal lymph nodes were included in the radia-
Japanese Research Society for Gastric Cancer for the delineation of
bination procedure that included stratification according to the tumor
stage (T1 to T2, T3, or T4) and the nodal status (no positive nodes,
positive nodes, or four or more positive nodes).
the regimen of fluorouracil and leucovorin was developed by the
North Central Cancer Treatment Group16 and was administered
before and after radiation. Chemotherapy (fluorouracil, 425 mg per
square meter of body-surface area per day, and leucovorin, 20 mg
per square meter per day, for 5 days) was initiated on day 1 and
was followed by chemoradiotherapy beginning 28 days after
the start of the initial cycle of chemotherapy. Chemoradiotherapy con-
stituted of 4500 cGy of radiation at 180 cGy per day, five days per
week for five weeks, with fluorouracil (400 mg per square meter per
day) and leucovorin (20 mg per square meter per day) on the first
four and the last three days of radiotherapy. One month after the
completion of radiotherapy, two five-day cycles of fluorouracil (425
mg per square meter per day) plus leucovorin (20 mg per square
meter per day) were given one month apart. The dose of fluorour-
acil was reduced in patients who had grade 3 or 4 toxic effects.
The 4500 cGy of radiation was delivered in 25 fractions, five
days per week, to the tumor bed, to the regional nodes, and 2 cm
beyond the proximal and distal margins of resection. The tumor
bed was defined by preoperative computed tomographic (CT) im-
ageing, barium roentgenography, and in some instances, surgical
clips. The presence of proximal T3 lesions necessitated treatment
of the medial left hemidiaphragm. We used the definitions of the
Japanese Research Society for Gastric Cancer for the delineation of
the regional-lymph-node areas.27,18 Perigastric, celiac, local para-
aortic, splenic, hepaticoduodenal or hepatic-portal, and pancreati-
coduodenal lymph nodes were included in the radiation fields. In
patients with tumors of the gastroesophageal junction, paraarc-
dial and periasophageal lymph nodes were included in the radia-
tion fields, but pancreatoduodenal radiation was not required.
Exclusion of the splenic nodes was allowed in patients with antral
lesions if it was necessary to spare the left kidney. Radiation was
delivered with at least 4-MV photons. Doses were limited so that less
than 60 percent of the hepatic volume was exposed to more than
3000 cGy of radiation. The equivalent of at least two thirds of one
kidney was spared from the field of radiation, and no portion of
the heart representing 30 percent of the cardiac volume received
more than 4000 cGy of radiation. Fluorouracil (400 mg per square
meter) and leucovorin (20 mg per square meter) were adminis-
tered as an intravenous bolus on each of the first four days and
the last three days of irradiation. This regimen was shown to be tol-
erable in a previous trial.19

Quality Assurance for Radiotherapy
Prior approval of the treatment plan for radiotherapy by the ra-
diation-oncology coordinator was required before the initiation
of radiotherapy. Treatment fields, dosimetry, surgery and pathol-
ogy reports, and preoperative tumor imaging were submitted for
review before treatment began. Plans that were not approved be-
cause of the risk of toxic effects on critical organs or the failure
to treat the appropriate target volumes were corrected before ther-
apy was begun. At these reviews, 35 percent of the treatment plans
were found to contain major or minor deviations from the proto-
col, most of which were corrected before the start of radiotherapy.
A final quality-assurance review of radiotherapy (conducted after
the delivery of radiation) revealed major deviations in 6.5 percent
of the treatment plans.

Follow-up of Patients
Follow-up of both groups occurred at three-month intervals for
two years, then at six-month intervals for three years, and yearly
thereafter. Follow-up consisted of physical examination, a complete
blood count, liver-function testing, chest radiography, and CT scan-
ing as clinically indicated. The site and date of the first relapse
and the date of death, if the patient died, were recorded.

Statistical Analysis
Our study was originally designed to include 350 patients.
With a two-sided alpha level of 0.05, the study had an estimated
80 percent power to detect a 50 percent relative difference in sur-
vival (equivalent to a hazard ratio for death of 1.5) and an estimated
95 percent power to detect a 60 percent relative difference in re-
lapse-free survival (a hazard ratio for death or relapse of 1.6). How-
ever, since enrollment was higher than expected, the data and safety
monitoring committee approved an amendment to expand the en-
rollment to 550 eligible patients, which ensured 90 percent power
to detect a 40 percent difference in survival (a hazard ratio of 1.4)
and a 40 percent difference in relapse-free survival.

The two stratification factors, the T stage (three levels) and the
N stage (three levels), were included as covariates in the Cox re-
gression analysis.26 The examination of other potential covariates
age, race, the extent [D level] of the dissection, and the location of
the primary tumor) yielded no significant effects, and these vari-
able were not included in the analysis. All eligible patients were
included in the analyses of survival and relapse-free survival accord-
ing to the intention-to-treat principle.

The sites of relapse were classified as follows: the relapse was
coded as local if tumor was detected in the surgical anastomosis,
residual stomach, or gastric bed, as regional if tumor was detected
in the peritoneal cavity (including the liver, intraabdominal lymph
nodes, and peritoneum), and as distant if the metastases were out-
side the peritoneal cavity. All eligible patients in the chemoradio-
therapy group who received any treatment were included in the
analysis of toxic effects.

The study was monitored by the data and safety monitoring com-
mittee of the Southwest Oncology Group. At two planned interim
analyses, the committee assessed whether the trial could be termi-
nated early according to protocol-specified guidelines. Both interim
analyses resulted in the continuation of the study until the planned
time for the reporting of final data.

RESULTS

Demographic Characteristics
Between August 1, 1991, and July 15, 1998, 603 pa-
ients were registered. Forty-seven patients (8 percent)
were deemed ineligible because they had positive sur-
gical margins, had disease other than adenocarcinoma
on pathological examination, or were registered after
the specified time limit. Of the remaining 556 pa-
tients, 275 were randomly assigned to surgery only
and 281 to surgery plus chemoradiotherapy. Demo-
graphic factors (Table 1) were similar between the two
groups; 94 percent of the patients were ambulatory or asymptomatic after surgery.

Most tumors were in the distal stomach. Lesions were present in the gastroesophageal junction in approximately 20 percent of the patients. The patients were at high risk for relapse; more than two thirds of them had stage T3 or T4 tumors, and 85 percent had nodal metastases (Table 1).

Treatment

Of the 281 patients assigned to the chemoradiotherapy group, 181 (64 percent) completed treatment as planned (Table 2); 17 percent stopped treatment because of toxic effects (investigators were not required to indicate the specific toxic effect that prompted the cessation of treatment). Eight percent declined treatment, 5 percent had progression of disease while receiving treatment, 1 percent died during the course of treatment, and 4 percent discontinued treatment for other reasons. Twelve patients (eight assigned to receive chemoradiotherapy and four assigned to receive surgery only) declined to continue the assigned therapy but are included in the assigned study group according to the intention to treat. The eight patients who declined to receive the protocol-specified chemoradiotherapy could not be evaluated for toxic effects.

Surgical Procedures

The only surgery-related requirements for eligibility were resection with curative intent and en bloc resection of the tumor with negative margins. Also required was a statement from the operating surgeon that no metastatic or unresected adenocarcinoma was present. Gastric resection with an extensive (D2) lymph-node dissection was recommended. This procedure entails the resection of all perigastric lymph nodes and some celiac, splenic or splenic-hilar, hepatic-artery, and cardial lymph nodes, depending on the location of the tumor in the stomach.1-3 However, since patients were usually identified postoperatively, we could not require specific surgical procedures. The operating surgeon completed a form defining the extent of lymphadenectomy. Of 552 patients whose surgical records were reviewed for completeness of resection, only 54 (10 percent) had undergone a formal D2 dissection. A D1 dissection (removal of all invaded [N1] lymph nodes) had been performed in 199 patients (36 percent), but most patients (54 percent) had undergone a D0 dissection, which is less than a complete dissection of the N1 nodes.

Toxicity

The toxic effects classified as grade 3 or higher that occurred among the 273 patients who received postoperative chemoradiotherapy are summarized in Table 3. Hematologic and gastrointestinal toxic effects predominated. The most common hematologic toxic effect was leukopenia. Severe thrombocytopenia was uncommon. Gastrointestinal toxic effects included nausea, vomiting, and diarrhea. Other types of toxic effects occurred in less than 10 percent of the patients. Three patients (1 percent) died as a result of a toxic effect attributed to chemoradiotherapy (pulmonary fibrosis in one patient, a cardiac event in another, and sepsis complicating myelosuppression in the third).

Overall and Relapse-free Survival

With a median follow-up period of 5 years, the median duration of survival was 36 months in the chemoradiotherapy group and 27 months in the surgery-
only group (Fig. 1). The three-year survival rates were 50 percent in the chemoradiotherapy group and 41 percent in the surgery-only group. The hazard ratio for death in the surgery-only group, as compared with the chemoradiotherapy group, was 1.35 (95 percent confidence interval, 1.09 to 1.66; P=0.005).

The hazard ratio for relapse in the surgery-only group, as compared with the chemoradiotherapy group, was 1.52 (95 percent confidence interval, 1.23 to 1.86; P<0.001). The median duration of relapse-free survival was 30 months in the chemoradiotherapy group and 19 months in the surgery-only group (Fig. 2). The three-year rates of relapse-free survival were 48 percent in the chemoradiotherapy group and 31 percent in the surgery-only group. Relapses were reported in 64 percent of the patients in the surgery-only group and 43 percent of those in the chemoradiotherapy group.

We recorded information on the site of the first relapse only, and these sites were categorized as local, regional, or distant (Table 4). Local recurrence occurred in 29 percent of the patients in the surgery-only group and 19 percent of those in the chemoradiotherapy group. Regional relapse — typically, abdominal carcinomatosis — was reported in 72 percent of those in the surgery-only group and 65 percent of those in the chemoradiotherapy group; 18 percent of those in the surgery-only group and 33 percent of those in the chemoradiotherapy group had distant relapses. Because we only required documentation of a single site of first relapse, a statistical assessment of differences in these patterns of relapse rates would be biased by a lack of complete reporting of sites.

We were unable to detect differences in the effects of treatment according to sex, race, the location of the primary tumor, or the extent of the surgical procedure.

DISCUSSION

In patients with rectal carcinoma, adenocarcinoma of the pancreas, and incompletely resected stom-

Table 3. Major Toxic Effects of Chemoradiotherapy.*

<table>
<thead>
<tr>
<th>Type of Toxic Effect</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematologic</td>
<td>148 (54)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>89 (33)</td>
</tr>
<tr>
<td>Influenza-like</td>
<td>25 (9)</td>
</tr>
<tr>
<td>Infection</td>
<td>16 (6)</td>
</tr>
<tr>
<td>Neurologic</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>11 (4)</td>
</tr>
<tr>
<td>Pain</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Metabolic</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Hepatic</td>
<td>4 (1)</td>
</tr>
<tr>
<td>Lung-related</td>
<td>3 (1)</td>
</tr>
<tr>
<td>Death†</td>
<td>3 (1)</td>
</tr>
</tbody>
</table>

*Major toxic effects were defined as those of grade 3 or higher. Data are for the 273 patients who received chemoradiotherapy.
†One patient died from a cardiac event, one from sepsis complicating myelosuppression, and one from pulmonary fibrosis.
ach cancer,13,14 postoperative regional radiation plus chemotherapy reduces the risk of relapse and prolongs survival. The frequent occurrence of local and regional relapses after resection for gastric cancer provided the rationale for our evaluation of the combination of chemotherapy and radiation in patients with adenocarcinoma of the stomach or gastroesophageal junction. Our results demonstrate that chemoradiotherapy after resection for gastric cancer significantly improves relapse-free and overall survival among such patients. The apparent benefit of adjuvant therapy could not be the result of shorter-than-expected survival in the surgery-only group, since the duration of survival in this group closely approximated that observed in other studies.5,21

The adequacy of surgical resection in our patients is an important issue. Resection of all detectable disease was required for participation in the trial. An extensive (D2) lymph-node dissection was recommended, but patients were not excluded on the basis of the extent of lymphadenectomy. Only 10 percent of the patients underwent a D2 dissection, 36 percent had a D1 dissection, and 54 percent had a D0 lymphadenectomy (a resection in which not all of the N1 nodes were removed).

Although one would intuitively expect extensive nodal dissection to be beneficial in removing subclinical cancer, its value has been the subject of serious debate in surgical oncology.24 Three randomized studies25-27 have compared D1 dissection with D2 dissection. The two largest of these studies26,27 found similar five-year survival rates after D1 and D2 procedures: 35 percent and 33 percent, respectively, in a study conducted in the United Kingdom and 45 percent and 47 percent, respectively, in a trial in the Netherlands. Both trials found significantly increased in-hospital mortality related to the distal pancreatectomy and splenectomy performed as part of the D2 procedure. Although these trials had their limitations — they did not control surgical technique precisely and had high overall mortality rates — no phase 3 trial to date has demonstrated a survival benefit resulting from D2 nodal resection. In our study, we were unable to detect any significant difference in relapse-free or overall survival according to the extent of the dissection ($P=0.80$).

In summary, our results demonstrate that local—regional radiotherapy plus fluorinated pyrimidine—based chemotherapy administered as adjuvant (post-operative) treatment significantly improves overall and relapse-free survival among patients with gastric cancer. Although this therapy may be delivered safely, radiation oncologists must be familiar with the proper techniques for the delivery of upper abdominal radiation in patients who have undergone gastrectomy, and the maintenance of adequate nutrition during therapy is essential. This study also indicates that a D0 lymphadenectomy is the most common type of lymph-node dissection performed in the United States during resection for gastric cancer. Adjuvant treatment with fluorouracil plus leucovorin and radiation should be considered for all patients with high-risk gastric cancer.

Supported in part by the following Public Health Service Cooperative Agreement grants from the National Cancer Institute: CA89826, CA-32102, CA35176, CA96429, CA15488, CA21661, CA25224, CA22443, CA404919, CA46441, CA20319, CA58348, CA46113, CA7057, CA4550, CA88882, CA46368, CA6844, CA49520, CA7981, CA58668, CA12644, CA12777, CA88416, CA46136, CA74647, CA74647, CA45-461, CA45807, CA45377, CA85723, CA55176, CA63845, CA16385, CA25254, CA58415, CA45281, CA35192, CA76448, CA35261, CA607663, CA46282, CA12213, and CA31946.

REFERENCES

10. Moertel CG, Childs DS, O’Fallon JR, Holbrook MA, Schutt AJ, Reitemeier RJ. Combined 5-fluorouracil and radiation therapy as a surgical...

Copyright © 2001 Massachusetts Medical Society.