A Review and Update of Treatment Options and Controversies in the Management of Hepatocellular Carcinoma

Mashaal Dhir, MBBS, Alyson A. Melin, DO, Jeffrey Douaiher, MD, Chi Lin, MD, PhD, Weining (Ken) Zhen, MD, Shahid M. Hussain, MD, PhD, Jean-Francois H. Geschwind, MD, Maria B. Majella Doyle, MD, MBA, FRCS, Ghassan K. Abou-Alfa, MD, and Chandrakanth Are, MD, MBA, FRCS, FACS

Objective: To review the current management, outline recent advances and address controversies in the management of hepatocellular carcinoma (HCC).

Summary of Background data: The treatment of HCC is multidisciplinary involving hepatologists, surgeons, medical oncologists, radiation oncologists, radiologists, interventional radiologists, and other disciplines. Each of these disciplines brings its unique perspective and differing opinions that add to controversies in the management of HCC.

Methods: A focused literature review was performed to identify recent studies on the management of HCC and thereby summarize relevant information on the various therapeutic modalities and controversies involved in the treatment of HCC.

Results: The main treatment algorithms continue to rely on hepatic resection or transplantation with controversies involving patients harboring early stage disease and borderline hepatic function. The other treatment strategies include locoregional therapies, radiation, and systemic therapy used alone or in combination with other treatment modalities. Recent advances in locoregional therapies, radiation, and systemic therapies have provided better therapeutic options with curative intent potential for some locoregional therapies. Further refinements in combination therapies such as algorithms consisting of locoregional therapies and systemic or radiation therapies are likely to add additional options and improve survival.

Conclusions: The management of HCC has witnessed significant strides with advances in existing options and introduction of several new treatment modalities of various combinations. Further refinements in these treatment options combined with enrollment in clinical trials are essential to improve the management and outcomes of patients with HCC.

Keywords: ablation, hepatocellular carcinoma, locoregional therapies, management, radiation, resection, systemic therapies, transplant

(Mas A M 2016;xx:xxx–xxx)

Worldwide, hepatocellular carcinoma (HCC) is the fifth most common cancer and a leading cause of cancer-related mortality, with an estimated 782,000 new cases and 745,000 deaths in the year 2012.1 HCC occurs more frequently in sub-Saharan Africa and Eastern Asia with over 50% of the cases in China alone.2 The incidence of HCC continues to rise in the United States because of an increase in the prevalence of its major risk factors, mainly Hepatitis C virus (HCV)-induced cirrhosis and nonalcoholic steatohepatitis. Introduction of new curative drugs for the treatment of HCV including sofosbuvir has led to sustained viral responses with cure rates of 80% to 100% for various genotypes.3 These high cure rates may significantly decrease the incidence of HCC in patients with chronic HCV in future. In 2014, there will be an estimated 33,190 new cases and 23,000 deaths due to liver and intrahepatic bile duct cancers in the United States, of which HCC will be the leading diagnosis.4

The management of HCC is rapidly evolving with the expansion of resection criteria, improved locoregional therapies, advent of novel targeted systemic therapies, newer techniques for internal and external radiation therapy, and the possibility of transplantation (Fig. 1). Because of the medical complexity of patients with HCC and the variability in the treatment modalities, patient selection and appropriate treatment allocation may be a challenge. Several staging systems have been made available to aid in patient selection (Table 1), yet the management of patients with HCC continues to be associated with numerous controversies.5 The aim of the current article is to provide a review of the treatment options and the associated controversies in the management of HCC. A brief overview of imaging for HCC is provided before discussing the treatment options and controversies.

Recently, Liver Imaging Reporting and Data System (LIRADS) was proposed to standardize the reporting and data collection of computed tomography (CT) and magnetic resonance (MR) imaging for HCC.6 This system of categorizing liver lesions in patients with cirrhosis or other risk factors for HCC allows radiologists to use consistent terminology, reduce the variability in imaging interpretation, enhance communication with referring physicians, and facilitate quality assurance and research. Current surveillance for HCC in high-risk patients is based on ultrasound (US) with or without alpha-fetoprotein (AFP).6 US is operator dependent, and all focal lesions on US should be verified using a 4-phase contrast enhanced study (unenhanced, arterial, portal venous, delayed)—multidetector contrast enhanced CT (CECT) or a dynamic contrast enhanced MRI (DCE-MRI) with nonspecific or liver-specific contrast agents (Eovist).8 Conventional FDG-PET has a low sensitivity for HCC, mainly because of the high glucose metabolic activity of the normal background liver. However, the newer 11C-Choline PET shows improved sensitivity and is promising especially for the detection of moderately differentiated HCC lesions.7 For lesions >1 cm, a 4-phase CECT or DCE-MRI, with features of arterial hypervascularity and venous or delayed phase washout are sufficient to make a diagnosis of HCC.5,6
CURATIVE INTENT TREATMENT OPTIONS

Liver Resection
Liver resection may be considered the primary treatment modality in patients with HCC in the absence of cirrhosis. For cirrhotic patients, resection for HCC is considered if the cirrhosis is well compensated, that is, Child-Pugh A, no portal hypertension exists, and the Model for End stage Liver Disease (MELD) score is less than 10. However, resection is usually contraindicated in patients with advanced liver disease, that is, Child-Pugh C and the majority of patients with Child-Pugh B with portal hypertension. Unfortunately, recurrence rates tend to be high, because resection does not address the malignant potential of the future liver remnant (FLR). Salient issues and controversies related to hepatic resection for HCC are addressed below.

Preoperative Assessment of Liver Function
In the Western world, Child-Pugh scoring system has been traditionally used for the evaluation of liver function, despite the inconsistent predictive value. Furthermore, patients categorized as Child-Pugh class A may already have significant liver impairment because of latent or undiagnosed portal hypertension, this is, when clinical or radiologic criteria to diagnose portal hypertension assume importance. Platelet count of less than 100,000/µL, splenomegaly, ascites requiring drug treatment or intervention, esophagogastric varices on upper endoscopy, and the presence of abdominal wall collaterals may point toward significant portal hypertension. In the absence of these criteria, some experts recommend hepatic venous catheterization to determine the wedge hepatic venous pressure (normal < 10 mm of Hg).

The MELD score is another valuable tool in the preoperative assessment of liver function in patients with cirrhosis.

Evaluation of Future Liver Remnant (FLR) Volume
The size and volume of the FLR can be calculated using 3-dimensional (3D) CT volumetry. Total estimated liver volume (TELV) is calculated using body surface area (BSA) with the formula TELV (cm3) = $-794 + 1267 \times$ BSA (m²). The ratio of CT-guided FLR volume measurement and TELV is called standardized FLR (sFLR). sFLR provides a determination of the percentage of TELV remaining after resection. For patients with HCC and cirrhosis undergoing resection, sFLR of at least 40% is recommended.
Portal Vein Embolization in HCC for a Small sFLR

Portal vein embolization (PVE) induces hypertrophy by blood flow redistribution and release of cytokines such as hepatocyte growth factor and transforming growth factor α and β. In patients with HCC and impaired liver function who are being considered for resection, PVE is offered to patients with sFLR of 35% to 40% or less. In a recent meta-analysis by van Lienden et al (n = 1791 with 365 HCC patients) PVE had a 96.1% clinical success rate (ie, surgery was not performed in 3.9% of patients, because of failure of PVE treatment). PVE had a mortality of 0.1%, major morbidity of 0.3% to 0.8%, and minor morbidity of 1.2% to 36.9%. Only 80% of the originally planned liver resections were eventually performed because of other factors such as insufficient hypertrophy or local tumor progression. Another meta-analysis by Abulkhir et al (n = 1088 with 265 HCC patients) reported a resection rate of 85% post PVE, zero mortality, and major complication rate of less than 1%. Shindo et al recommended at least a 5% but preferably a 10% increase in sFLR post PVE to optimize outcomes. In addition, sequential use of transarterial chemoembolization (TACE) and PVE is being employed to avoid tumor hypertrophy during the wait period while liver remnant is undergoing hypertrophy. Kinetic growth rate of at least 2% per week of the sFLR is being utilized by some experts for liver resection in patients with colorectal liver metastases; however, its use in patients with HCC is being explored. Some European and South American centers have recently explored the use of associated liver partition and portal vein ligation for staged hepatectomy to achieve rapid FLR hypertrophy. However, its use in US remains limited.

Anatomic Resection Versus Nonanatomic Resection in HCC

Several meta-analyses have shown that anatomic resection (AR) is associated with better overall survival (OS) and 5-year disease-free survival (DFS) compared with nonanatomic resection (NAR) with similar posthepatectomy morbidity and mortality in patients with HCC. It is likely that NAR patients are more likely to have advanced cirrhosis therefore precluding AR. Current data supports that AR may be performed wherever feasible especially in patients with HCC 2 to 5 cm in size but NAR with negative margins may be acceptable strategy in patients who are unable to tolerate AR.

Regional Lymphadenectomy in HCC

The incidence of lymph node metastasis (LNM) in patients with HCC is approximately 5% (range 0–10%) although autopsy studies show a much higher rate, ranging from 25% (with cirrhosis) to 43.9% (without cirrhosis). The treatment of LNM in patients with HCC remains controversial. Regional lymphadenectomy may not affect survival, but provides additional prognostic information. Patients with LNM are more likely to develop recurrence and have poor long-term outcomes compared with those without LNM. Ercolani et al recommended regional lymphadenectomy in non-cirrhotic patients with HCC undergoing resection and sampling of at least 4 LNs in cirrhotic patients with HCC undergoing liver transplantation to provide adequate prognostic information. In the United States, experts support selective sampling of LNs based on preoperative imaging and enlargement of LNs at the time of operation.
However, even when resection is possible in some patients, these tumors still remain a therapeutic challenge with poor prognosis.

Laparoscopic Liver Resections in HCC

Laparoscopic liver resections are increasing in popularity since the first laparoscopic liver resection in 1992. In the absence of level 1 data, laparoscopic liver resection seems to be comparable to open liver resections in terms of morbidity, mortality, and short- and long-term oncologic outcomes. In a review of 2804 laparoscopic liver resections (50% for malignancies of which 52% were for HCC), Nguyen et al reported a 5-year OS and DFS of 50% to 75% and 31% to 38.5%, respectively. A meta-analysis of long-term outcomes comparing laparoscopic (n = 308) and open liver resections (n = 404) revealed similar 1-, 3-, and 5-year OS between the 2 groups (laparoscopic = 92%, 77.7%, and 61.95% and open = 91.3%, 76.5%, and 56.5%, respectively). Laparoscopy is now an accepted strategy for resection of HCC, and further expansion will be based on the availability of more robust evidence, improving expertise and demonstration of cost-effectiveness.

Outcomes

A meta-analysis (n = over 35,000 liver resections of which HCC = 13,497) documented a perioperative mortality and morbidity rate of 4.01% and 28.1%, respectively, for HCC patients. Population-based database studies also reported similar, though slightly higher mortality rates ranging from 4.6 to 7.3%. Although mortality is low, morbidity continues to remain high with posthepatectomy liver failure (reported rates of 5%–15%) manifesting as one of the serious complications. Therefore, careful patient selection and limiting resection to patients with well-compensated cirrhosis is essential. Recently, many groups have devised risk scores and nomograms to predict perioperative mortality after liver resection to improve patient selection.

The 5-year OS after hepatic resection is approximately 25% to 50%. Multifocal HCC and major vascular invasion are associated with poor survival. In patients with small solitary HCC and well-preserved liver function, the 5-year OS may exceed 50%. Table 2 summarizes the outcomes after liver resection for HCC in selective series since 2000 (see supplementary reference file for the studies cited in Table 2). In patients with small solitary HCC and well-preserved liver function, the 5-year OS may exceed 50%. Therefore, careful patient selection and limiting resection to patients with well-compensated cirrhosis is essential. Recently, many groups have devised risk scores and nomograms to predict perioperative mortality after liver resection to improve patient selection.

The 5-year OS after hepatic resection is approximately 25% to 50%. Multifocal HCC and major vascular invasion are associated with poor survival. In patients with small solitary HCC and well-preserved liver function, the 5-year OS may exceed 50%. Table 2 summarizes the outcomes after liver resection for HCC in selective series since 2000 (see supplementary reference file for the studies cited in Table 2).

Orthotopic Liver Transplant

In 1996, Mazzaferro et al published the Milan criteria (single HCC < 5 cm in size, 3 or fewer nodules each < 3 cm in size and absence of extrahepatic spread or major vascular invasion) and documented that patients with HCC and tumors within the Milan criteria had similar outcomes after liver transplantation when compared with non-HCC patients. However, many studies do not take into account the mortality while awaiting liver transplantation or dropout from the waiting list, because many patients may experience disease progression. Several consensus statements have been issued recently that provide an insight into the role of orthotopic liver transplant (OLT) for HCC.

Organ Allocation and Exception Points

Organ allocation is based on MELD score. Patients meeting the American Liver Tumor Study Group-modified TNM stage II (1 tumor > 2 cm but < 5 cm or 2–3 tumors largest being < 3 cm) receive a MELD score of 22, equivalent to a 3-month mortality of 15%. This helps limit the increased mortality and dropout associated with disease progression while on the waiting list. Transplant centers recently this data every 3 months. Patients continuing to meet stage II definition receive additional 10% mortality risk points (3 MELD points every 3 months after review by the regional review board). However, some modifications were later proposed to this system because it was felt that patients with HCC seem to have significant advantage over non-HCC candidates under the current MELD system; the recently held national consensus conference proposed that patients with HCC within Milan criteria should stay within these criteria for 3 months before exception points can be granted, although this policy has not been implemented to date.

HCC Within Milan Criteria in Patients With Child-Pugh A Cirrhosis: Resection Versus Transplantation

Child-Pugh class A cirrhotic patients with HCC who meet the Milan criteria are a subset of patients who can either be treated by resection or transplantation with comparable outcomes. There are proponents of each treatment type. Deciding between the 2 treatment modalities is influenced by surgeon specialty and local expertise. Recurrence may be higher after resection but transplantation is associated with longer waiting times due to organ shortage, disease progression while on waiting list, and cost implications secondary to immunosuppression. Several recent meta-analyses including Dhir et al, Rahman et al, and Proneth et al (Fig. 2) have attempted to address this issue. These meta-analyses have noted that when resection and transplantation are compared in patients with early HCC, transplantation is associated with favorable 5-year OS and DFS. However, when an intention-to-treat analysis is performed taking into account the mortality associated with the waiting list, the 5-year OS between resection and transplant are comparable. Recurrence rates are significantly increased after resection compared with transplantation. Long-term outcomes may be worse after resection, with reported 10-year OS of 22% after resection versus 54% after transplantation. Recently, a single single-center study (HCV-related early HCC < 5 cm, Child A or B class, with 30% drop-out rate) performed an intention-to-treat analysis and demonstrated better but statistically insignificant median survival for resection (61.8 vs 30.6 mo) although the transplant group had a lower recurrence rate (30% vs 71.5%, P < 0.001). Resection and transplantation will continue to remain viable options until further evidence becomes available.

Extended Criteria HCC

Several groups have proposed that Milan criteria are too restrictive and limit the transplant option to patients with very early disease. Researchers at the University of San Francisco (UCSF) observed that many times the explant tumors were bigger than the Milan criteria but this did not lead to poor outcomes. Based on these observations, they proposed the extended UCSF criteria for HCC, which consist of (1) single tumor less than 6.5 cm, (2) maximum of 3 total tumors with none greater than 4.5 cm, and (3) multiple tumors with cumulative tumor size less than 8 cm. The relevance of these criteria was supported by a subsequent study of 467 patients, which divided patients into 3 groups: Milan criteria (n = 173), UCSF criteria (n = 185), and Beyond UCSF criteria (n = 109). The 1-, 3-, and 5-year survival were similar in the Milan and UCSF groups, which were superior to the Beyond UCSF group. Toso et al reported a 3 institution study calculating the total tumor volume from pretransplant imaging that may be a useful tool for selection of patients with HCC for transplantation; they reported a total tumor volume cutoff of 115 cm³, below which patients have similar outcomes to those within Milan and UCSF criteria. Several other new criteria that are less restrictive than the original Milan criteria have also been proposed such as “Upto 7 criteria,” “Kyoto criteria,” “Asan criteria,” and “Hangzhou criteria.” It is likely that as further evidence becomes available, indications for transplantation outside of the Milan criteria will continue to increase.
TABLE 2. Summary of Selected Studies Since 2000 Reporting Overall Survival (OS), Disease Free Survival (DFS), Morbidity and Mortality After Liver Resection (RES) and/or Transplant (LT) for HCC.

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>RES</th>
<th>LT</th>
<th>Tumor Size</th>
<th>Child-Pugh Class</th>
<th>OS RES Median mo</th>
<th>OS RES 5 yrs %</th>
<th>OS LT Median mo</th>
<th>OS LT 5 yrs %</th>
<th>DFS RES Median mo</th>
<th>DFS RES 5 yrs %</th>
<th>DFS LT Median mo</th>
<th>DFS LT 5 yrs %</th>
<th>Mortality RES %</th>
<th>LT RES %</th>
<th>Mortality LT %</th>
<th>LT RES %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koniaris et al, Ann Surg, 2011</td>
<td>26</td>
<td>73</td>
<td>Milan criteria</td>
<td>Not mentioned. Utilized MELD score</td>
<td>Yes</td>
<td>83</td>
<td>63</td>
<td>50</td>
<td>41</td>
<td>>60</td>
<td>52</td>
<td>50</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al, J Surg Oncol, 2010</td>
<td>82</td>
<td>48</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A and B</td>
<td>No</td>
<td>58.4</td>
<td>78.1</td>
<td>57.4</td>
<td>89.1</td>
<td>0.8</td>
<td>5.1</td>
<td>30</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baccarani et al, Transpl Int, 2008</td>
<td>38</td>
<td>48</td>
<td>Milan criteria</td>
<td>A, B, and C</td>
<td>Yes</td>
<td>44</td>
<td>27</td>
<td>Not reached</td>
<td>72</td>
<td>37</td>
<td>98</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellovaute et al, J Gastrointest Surg, 2008</td>
<td>245</td>
<td>134</td>
<td>Milan criteria</td>
<td>No</td>
<td>55</td>
<td>46</td>
<td>120</td>
<td>66</td>
<td>45</td>
<td>40</td>
<td>Not reached</td>
<td>82</td>
<td>2.9</td>
<td>2.2</td>
<td>49</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Del Guado et al, Ann J Transpl, 2008</td>
<td>80</td>
<td>293</td>
<td>Milan criteria</td>
<td>A, B, and C</td>
<td>Yes</td>
<td>66</td>
<td>58</td>
<td>41</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cillo et al, J Surg Oncol, 2007</td>
<td>131</td>
<td>40</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A, B, and C</td>
<td>Yes</td>
<td>43</td>
<td>31</td>
<td>63</td>
<td>24</td>
<td>91</td>
<td>5.3</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shah et al, Ann Surg Oncol, 2007</td>
<td>121</td>
<td>140</td>
<td>Milan criteria</td>
<td>A and B</td>
<td>Yes</td>
<td>56</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Poon et al, Ann Surg, 2007</td>
<td>204</td>
<td>43</td>
<td>Milan criteria</td>
<td>A, B, and C</td>
<td>Yes</td>
<td>60</td>
<td>Not reached</td>
<td>44</td>
<td>44</td>
<td>84</td>
<td>3.4</td>
<td>0</td>
<td>35.3</td>
<td>44.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangant et al, Liver Transpl, 2005</td>
<td>37</td>
<td>36</td>
<td>Milan criteria</td>
<td>A</td>
<td>No</td>
<td>85</td>
<td>70</td>
<td>85</td>
<td>65</td>
<td>39</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adam et al, Ann Surg 2003</td>
<td>98</td>
<td>195</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A, B, and C</td>
<td>Yes</td>
<td>50</td>
<td>61</td>
<td>18</td>
<td>58</td>
<td>2.1</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bigourdan et al, Liver Transpl, 2003</td>
<td>20</td>
<td>17</td>
<td>Milan criteria</td>
<td>A</td>
<td>Yes</td>
<td>36</td>
<td>71</td>
<td>40</td>
<td>80</td>
<td>5</td>
<td>0</td>
<td>30</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shabahang et al, Ann Surg Oncol, 2002</td>
<td>44</td>
<td>65</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A, B, and C</td>
<td>No</td>
<td>37</td>
<td>66</td>
<td>36</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Calfis et al, Transpl Proc, 2001</td>
<td>21</td>
<td>92</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A</td>
<td>No</td>
<td>54.5</td>
<td>54.3</td>
<td>18</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figueras et al, J Am Coll Surgeons, 2000</td>
<td>35</td>
<td>85</td>
<td>Milan criteria + tumors outside the Milan criteria</td>
<td>A, B, and C</td>
<td>No</td>
<td>51</td>
<td>60</td>
<td>31</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For complete reference information, please see supplementary reference file.

Intention to treat data for OS and DFS are mentioned wherever available.

Study includes tumors within and outside the Milan criteria. Survival data refers to patients within the Milan criteria.

15 year survival.

RES indicates resection; LT, liver transplant.
Downstaging

Patients with confirmed downstaging to Milan criteria for a minimum period of 3 to 6 months after the initial therapy may be granted equivalent MELD exception points similar to patients who initially present with stage II HCC. TACE and radiofrequency ablation (RFA) and more recently yttrium 90 are commonly utilized strategies for downstaging. In a recent systematic review (n = 720), Gordon-Weeks et al documented a downstaging rate of 24% to 69% and transplantation rate of 9.6% to 57%. The 1-, 3-, and 5-year OS and DFS were similar to patients who were initially within the Milan criteria.

There are no clearly defined upper limits for size and number of lesions that preclude a patient from downstaging. However, presence of extrahepatic disease and major vascular invasion are often considered as contraindications for downstaging. The recently held national consensus conference used the modified UCSF criteria to develop guidelines for selecting patients for downstaging. This panel suggested the following inclusion criteria for downstaging: (1) single tumor greater than 5 cm and equal to or less than 8 cm in maximal diameter, (2) 2 or 3 tumors, each equals to or less than 5 cm in maximal diameter, with the sum of the maximal tumor diameter of all tumors 8 cm or less than 8 cm, and (3) no
evidence of vascular invasion on multiphase CT or MRI of abdomen.31 As per the panel, successful downstaging is defined as tumor shrinking down to Milan criteria and drop in AFP levels below 500 ng/mL.31 In patients who are successfully downstaged, a minimum waiting period of 3 months is recommended before transplantation. Several centers participating in these strategies have reported successful downstaging with good outcomes.

Bridging Therapies for HCC Before Liver Transplant

There are several roles of bridging therapies: (1) decrease the incidence of disease progression and dropout while on the waiting list, (2) downstage patients who are outside of the Milan criteria, (3) add neo-adjuvant therapy to improve the prognosis of patients undergoing OLT for HCC, (4) possibly avoid or delay the need for transplantation in patients who have a favorable response, and (5) as a selection tool for patients who have treatment-responsive disease and may have a favorable prognosis overall.21,31,37

Current consensus guidelines recommend periodic (commonly 3 months) monitoring of listed patients using imaging and AFP measurements, to identify those who develop disease progression.21 Bridging strategies with locoregional therapies may be used to decrease tumor-related dropout rates and are usually beneficial for patients with a waiting time of 6 months or more.21,30,31 There is no evidence to suggest that bridging strategies are of any benefit in patients with United Network of Organ Sharing T1 tumors (<2 cm). Bridging strategies are most likely to benefit United Network of Organ Sharing T2 tumors (1 nodule 2–5 cm or 3 or fewer nodules each ≤3 cm) with likely waiting times of 6 months or longer, because these patients are at highest risk for dropout.21,30,31

Hepatic Resection and Salvage Liver Transplant

Resection may be used as a primary therapy for patients with preserved liver function, whereas OLT is reserved for patients who experience recurrence or liver failure, but there are conflicting results using this strategy. Some authors suggest similar outcomes using resection and salvage transplantation to primary liver transplantation, and others report worse outcomes. A recent systematic review by Hu et al40 (n = 110) showed no difference in the 1-, 3-, and 5-year survival rates between salvage and primary liver transplants. This strategy may not be optimal for patients with HCV associated HCC, because these patients tend to have more aggressive recurrences compared with the patients with hepatitis B virus associated HCC.41 However, choosing this strategy requires close patient follow-up, and patients who have T2 recurrences should be eligible for priority listing for HCC with the caveat that some patients will recur beyond T2 and will be ineligible for salvage transplantation.

One potential benefit of this approach is that resection may permit pathologic evaluation to identify any adverse tumor biological features that can improve patient selection for OLT.41 However, in the US patients who undergo resection lose their priority listing precluding its use as a bridge to transplantation.21 This makes resection a less-attractive option for HCC patients who are listed for transplantation in US. Some experts suggest that prognostic information similar to resection may be gained from a core biopsy, with minimal risk for seeding.

Outcomes

Table 2 summarizes the outcomes after liver transplantation in selected series since 2000 (see supplementary reference file for references, http://links.lww.com/SLA/A926). Perioperative mortality reported by major institutions is 0 to 5%; however, morbidity remains high. The 5-year OS after OLT for HCC within the Milan criteria varies from 41% to 78% with most studies ranging between 50% and 70%. Five-year DFS for OLT ranges from 60% to 80% in most studies. High AFP levels have been associated with increased recurrence and reduced survival post liver transplant.42 The model proposed by Duvox et al42 included the usual tumor size and number with the addition of AFP and has demonstrated superiority over Milan criteria in predicting recurrence. Using this model, patients beyond Milan criteria with AFP less than 100 ng/mL were at low risk of recurrence and those with levels above 1000 ng/mL were at higher risk of recurrence and reduced survival. Even for those within Milan criteria, an AFP level of more than 1000 ng/mL is associated with increased recurrence and reduced survival. In addition to high AFP, other factors associated with poor prognosis include poor tumor biology (poor differentiation, satellite lesions, microinvasion) and host-related factors such as HIV and HCV co-infection etc.43,44

In summary, resection and transplantations are the main curative-intent treatment options for HCC. These treatment options should be considered complementary in the management of HCC. In addition, some experts consider radiofrequency ablation (RFA) as curative treatment. However, this remains controversial. This modality is discussed in detail below.

NON-CURATIVE INTENT TREATMENT OPTIONS

Locoregional Therapies

Locoregional therapies can be broadly divided into 2 categories, that is, ablation and embolization. Figure 3 delineates the algorithm for the use of locoregional therapies in HCC. Salient issues and controversies related to locoregional therapies for HCC are addressed below.

Ablation

Percutaneous ethanol injection (PEI) and RFA are the 2 most commonly used ablative treatments for HCC in addition to other modalities listed below.

Percutaneous Ethanol Injection (PEI)

Ethanol injection causes coagulative necrosis although its distribution may be blocked by intratumoral septa and/or tumor capsule resulting in heterogeneous distribution.45 As a result, curative capacity of PEI is limited, particularly in tumors larger than 2 cm in size, and it requires multiple injections over multiple sessions. Lin et al46 demonstrated a recurrence rate of 42% and 51% at 2 and 3 years, respectively, in patients with lesions approaching 3 cm in size. To overcome these limitations, some authors have reported high dose injections or use of multipronged needles.

Radiofrequency Ablation (RFA)

RFA is most suitable for tumors smaller than 3 cm in size and is considered less effective for tumors more than 4 cm in size. In a review of over 5000 tumors treated by RFA, recurrence at the tumor site increased with tumor size: 14% (<3 cm), 25% (3–5 cm), and 58% (>5 cm).47 However, these rates may change as more sophisticated probes become available.

Radiofrequency Ablation vs Percutaneous Ethanol Injection

In a meta-analysis of 5 randomized controlled trials, RFA when compared with PEI demonstrated better outcomes.48 RFA may be considered a first-line ablative treatment in patients with small HCC (<3 cm) and well-preserved liver functions. PEI may be reserved for lesions not suitable for RFA owing to the location. Supplementary Table 1, http://links.lww.com/SLA/A926, provides a summary of selected studies comparing RFA to PEI in patients with HCC.
Radiofrequency Ablation Versus Liver Resection

The choice of RFA versus liver resection in some settings remains controversial. Most studies suggest that liver resection leads to higher overall and recurrence-free survival but outcomes may be comparable when tumors are less than 2 cm in size. Therefore, RFA is considered a curative intent treatment option by some experts. Although overall mortality is low for both resection and RFA, the morbidity rates are shown to be consistently lower for RFA (Table 3, see supplementary reference file for references, http://links.lww.com/SLA/A926). Treatment options need to be tailored to the individual patient.

Microwave Ablation

Microwave ablation (MWA) may have certain advantages over RFA such as higher temperature at the target tissue, less pronounced heat sink effect, shorter duration of therapy, less risk for skin burning, and effective treatment of cystic lesions. Although earlier trials failed to show superiority over RFA, more recent studies have demonstrated equivalency to RFA in the treatment of HCC. In a systematic review of 34 studies including 3 RCTs, Bertot et al evaluated the mortality and complication rates associated with percutaneous ablative techniques including RFA, PEI, and MWA. The overall mortality rate (0.15%, 0.59%, and 0.23%) and morbidity (4.1%, 2.7%, and 4.6%) for RFA, PEI, and MWA, respectively, were comparable demonstrating the safety of MWA when compared with PEI and RFA.

Irreversible Electroporation

Irreversible electroporation (IRE) is a nonchemical nonthermal ablation technique that generates electrical pulses leading to cell death. Safety and efficacy of IRE has been reported in clinical studies. Currently, nonmetastatic unresectable HCC patients (underlying liver disease, portal hypertension) who are not candidates for transplantation or ablation with tumors located in proximity to blood vessels, bile ducts, diaphragm, or gastrointestinal tract may be candidates for IRE under controlled clinical settings.

Cryoablation

Some of the advantages of cryoablation over RFA include (1) less pain associated with the procedure, (2) ability to visualize the ice ball that allows for a precise evaluation of the treatment zone, and (3) less pronounced heat sink effect. Another advantage of cryoablation is the ectopic antitumor effect, which indirectly suppresses nontargeted tumor nodules through release of tumor antigens and downregulation of regulatory T cells. The more recent smaller probes have improved the complication profile (17% with older probes) and demonstrated favorable survival outcomes compared with RFA or surgical resection.

Other ablation therapies such as laser ablation therapy and high intensity focused ultrasound are being investigated.

Embolization

Embolization plays multiple roles in the management of HCC. The different types of arterial embolization employed in the treatment of HCC include (1) bland embolization with particles consisting of gelatin sponge or polyvinyl alcohol or polyacrylamide (transarterial embolization or TAE), (2) chemoembolization with doxorubicin or cisplatin (TACE, which can be of the conventional type [cTACE] or with drug-eluting beads [DEB TACE]), or (3) radioembolization with yttrium-90 (TARE) an emitter of beta radiation (discussed in the next section).

Transarterial Embolization (TAE) vs. conventional Transarterial Chemoembolization (cTACE) or Drug Eluting Beads (DEB) TACE

Although TACE has been shown to be superior to best supportive therapy, superiority of cTACE over TAE has not been established (Table 4). Meta-analysis of RCTs conducted by Xie et al noted that 6-, 9-, 12-, 24-, and 36-month OS of the cTACE group was not significantly higher than that of the TAE group (all $P > 0.05$). Further studies comparing cTACE to TAE are ongoing.
TABLE 3. Selected Studies Comparing Resection (RES) vs. Radiofrequency Ablation (RFA) in Patients with HCC

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of Study</th>
<th>Country</th>
<th>Treatment</th>
<th>Patients</th>
<th>Size Criteria</th>
<th>Mean Tumor Size, cm</th>
<th>Follow-up Period</th>
<th>Overall Survival, %</th>
<th>Recurrence Free Survival, %</th>
<th>Complications</th>
<th>Mortality</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Studies</td>
<td></td>
</tr>
<tr>
<td>Chen et al., Ann Surg, 2006</td>
<td>RCT</td>
<td>China</td>
<td>RES</td>
<td>90</td>
<td>Solitary HCC ≤ 5 cm</td>
<td>—</td>
<td>Mean 29.2 mo</td>
<td>93.3</td>
<td>82.3</td>
<td>73.4</td>
<td>NS</td>
<td>86.6</td>
</tr>
<tr>
<td>Huang et al., Ann Surg, 2010</td>
<td>RCT</td>
<td>China</td>
<td>RES</td>
<td>115</td>
<td>Milan criteria</td>
<td>—</td>
<td>Median 3.87 yrs</td>
<td>98.3</td>
<td>96.5</td>
<td>92.2</td>
<td>75.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Feng et al., J Hepatol, 2012</td>
<td>RCT</td>
<td>China</td>
<td>RES</td>
<td>84</td>
<td>Diameter up to 4 cm and up to 2 nodules</td>
<td>2.6 ± 0.8</td>
<td>3-year follow-up period</td>
<td>96</td>
<td>87.6</td>
<td>74.8</td>
<td>0.342</td>
<td>90.6</td>
</tr>
<tr>
<td>Western Studies</td>
<td></td>
</tr>
<tr>
<td>Lupo et al., HPB, 2007</td>
<td>Retrospective analysis</td>
<td>Italy</td>
<td>RES</td>
<td>42</td>
<td>Single HCC 3–5 cm without end-stage liver disease</td>
<td>4</td>
<td>Mean 31 mo</td>
<td>91</td>
<td>57</td>
<td>43</td>
<td>0.824</td>
<td>74</td>
</tr>
<tr>
<td>Abu-Hilal et al., J Gastrointest Surg, 2008</td>
<td>Retrospective analysis</td>
<td>UK</td>
<td>RES</td>
<td>34</td>
<td>Size 1–5 cm</td>
<td>3.8</td>
<td>Mean 27 mo</td>
<td>96</td>
<td>53</td>
<td>32</td>
<td>68</td>
<td>18</td>
</tr>
<tr>
<td>Santambrogio et al., Ann Surg Oncol, 2009</td>
<td>Retrospective analysis</td>
<td>Italy</td>
<td>RES</td>
<td>78</td>
<td>Single HCC nodule and Child A Cirrhosis</td>
<td>2.87 ± 1.21</td>
<td>Mean 36.2 mo</td>
<td>93</td>
<td>85</td>
<td>54</td>
<td>0.163</td>
<td>93</td>
</tr>
<tr>
<td>Li et al., J Am Coll Surg, 2014</td>
<td>ACS-NSQIP analysis</td>
<td>US</td>
<td>RES</td>
<td>837</td>
<td>Minor hepatectomy</td>
<td>2.63 ± 1.07</td>
<td>Mean 38.2 mo</td>
<td>88</td>
<td>66</td>
<td>41</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

ACS-NSQIP indicates American College of Surgeons National Surgical Quality Improvement Program; RES, resection; RCT, randomized controlled trial.

For complete reference information, please see supplementary reference file.
Rationale:

Yitvan-90 (Y90) is the most commonly used agent for selective internal radiation therapy (SIRT) in HCC. SIRT has been combined with other strategies such as ablation, radiotherapy, and systemic therapy with sorafenib and VEGF inhibitors. TACE has also been combined with RFA for treatment of HCC and recent meta-analysis demonstrated the benefits of this approach.

Radioembolization is a selective internal radiation therapy or radioembolization. This procedure involves the selective delivery of radiation to the tumor site via an embolization technique. It is performed by injecting yttrium-90 microspheres or gold seeds into the tumor arteries. These radioactive particles release their energy over an extended period, causing cell death in the surrounding tumor tissue.

Table 4. Selected Studies Comparing Transarterial Embolization (TAE) to Conventional Transarterial Chemoembolization (cTACE) or Drug Eluting Beads (DEB) TACE Since 2000 in Patients with HCC

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Treatment Type</th>
<th>Country</th>
<th>Number of Patients</th>
<th>BCLC Stage, A/B/C</th>
<th>Mean tumor size ± SD, cm</th>
<th>Follow-up, mo</th>
<th>Comments</th>
<th>Response Rate</th>
<th>Time to Progression</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llovet et al., 2002</td>
<td>TAE</td>
<td>Spain</td>
<td>37</td>
<td>03/28/90</td>
<td>5.2</td>
<td>Mean 21.7</td>
<td></td>
<td>6 mo response (CR + PR)</td>
<td>TAE vs control = 0.001</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td>cTACE</td>
<td></td>
<td>40</td>
<td>03/35/90</td>
<td>4.9</td>
<td>Mean 21.2</td>
<td></td>
<td>28.7</td>
<td>TAE vs control = 0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td>35</td>
<td>02/38/90</td>
<td>4.4</td>
<td>Mean 44.5</td>
<td></td>
<td>63</td>
<td>TACE vs control p = 0.000</td>
<td></td>
</tr>
<tr>
<td>Malagari et al., 2010</td>
<td>DEB TACE</td>
<td>Greece</td>
<td>41</td>
<td>81 ± 28</td>
<td>(CR + PR)</td>
<td>18.9</td>
<td>9.0 ± 2.3</td>
<td>NS</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EASL criteria</td>
<td>25.7</td>
<td>10.6 ± 2.7</td>
<td>100</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Meyer et al., 2013</td>
<td>cTACE</td>
<td>United Kingdom</td>
<td>42</td>
<td>09/16/15 (2 unknown)</td>
<td>8.35 ± 2.75</td>
<td>Median follow up at the end of treatment</td>
<td>47.3</td>
<td>7.2</td>
<td>7.5</td>
<td>No difference between TAE and DEB TACE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mRECIST criteria</td>
<td>71.4</td>
<td>7.5</td>
<td>64</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

For complete reference information, please see supplementary reference file.

CR indicates complete response; EASL, European Association for Study of Liver; mRECIST, modified RECIST evaluation criteria in solid tumors; NS, not significant; PR, partial response; SD, standard deviation; WHO, World Health Organization.
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Study Type</th>
<th>Country</th>
<th>Treatment Type</th>
<th>Number of Patients</th>
<th>BCLC Stage, A/B/C</th>
<th>Mean Tumor Size, cm</th>
<th>Follow-up, mo</th>
<th>Comments</th>
<th>Mean, mo</th>
<th>P</th>
<th>Median, mo</th>
<th>Mean, mo</th>
<th>P</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Song et al, J Hepatol, 2012</td>
<td>Retrospective comparative analysis</td>
<td>Korea</td>
<td>cTACE</td>
<td>69</td>
<td>A/B 28/41</td>
<td>5.2±3.1</td>
<td>18 mo</td>
<td>Overall</td>
<td>49.4</td>
<td><0.001</td>
<td>7.6</td>
<td>0.018</td>
<td></td>
<td>24.7±1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEB TACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>response</td>
<td>81.6</td>
<td></td>
<td>11.7</td>
<td>0.008</td>
<td>32.2±1.9</td>
<td></td>
</tr>
</tbody>
</table>
| Golfieri et al, Br J Cancer, 2014 | Randomized controlled trial | Italy | cTACE | 88 | A/B/C 41/23/24 | 2.8±1–10 | 2 yrs or until death | CR at 12 mo | 51.7 | 0.767 | 28 | 55.4 | 0.949 | | DEB TACE and cTACE are equally effective and safe. Comparable outcomes in patients with DEB TACE and cTACE.
| | | | DEB TACE | | | | | | 9.0 | | 9.0 | 0.776 | 29 | 86.2 | |
| Sacco et al, J Vasc Interven Radiol, 2011 | Randomized controlled trial | Italy | cTACE | 34 | A/B 22/8 | 3.85±1.89 | 1 mo | CR, PR | 70.6 | 0.11 | 12.8 | 0.46 | | 83.6 | 0.96 |
| | | | DEB TACE | | | 4.47±2.68 | | | 51.5 | | 8.9 | | 86.8 | |
| Lammer et al, Cardiovasc Interven Radiol, 2010 | Randomized controlled trial | European Multicenter | cTACE | 108 | A/B 24/79 | 8.92±5.93 | | | 22.2 | 0.11 | 26.9 | 26.8 | 0.96 | |
| | | | DEB TACE | | | 8.89±5.21 | | | 24.7 | | 11.8 | | | |
| Dhamdherekar et al, J Surg Oncol, 2010 | Retrospective comparative analysis | US | cTACE | 26 | Okuda III/III | 7.4±4.91 | | | 9.4 (0.284 d) | 58 | 19 | 0.031 |
| | | | DEB TACE | | | 5.49±4.29 | | | 9.4 (0.284 d) | 58 | 19 | 0.031 |

TABLE 5. Selected Studies Comparing Conventional TACE to DEB TACE in Patients With HCC

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Study Type</th>
<th>Country</th>
<th>Treatment Type</th>
<th>Number of Patients</th>
<th>BCLC Stage, A/B/C</th>
<th>Mean Tumor Size, cm</th>
<th>Follow-up, mo</th>
<th>Comments</th>
<th>Mean, mo</th>
<th>P</th>
<th>Median, mo</th>
<th>Mean, mo</th>
<th>P</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Song et al</td>
<td>Retrospective analysis</td>
<td>Korea</td>
<td>cTACE</td>
<td>69</td>
<td>A/B 28/41</td>
<td>5.2±3.1</td>
<td>18 mo</td>
<td>Overall</td>
<td>49.4</td>
<td><0.001</td>
<td>7.6</td>
<td>0.018</td>
<td></td>
<td>24.7±1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEB TACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>response</td>
<td>81.6</td>
<td></td>
<td>11.7</td>
<td>0.008</td>
<td>32.2±1.9</td>
<td></td>
</tr>
</tbody>
</table>
| Golfieri et al| Randomized controlled trial | Italy | cTACE | 88 | A/B/C 41/23/24 | 2.8±1–10 | 2 yrs or until death | CR at 12 mo | 51.7 | 0.767 | 28 | 55.4 | 0.949 | | DEB TACE and cTACE are equally effective and safe. Comparable outcomes in patients with DEB TACE and cTACE.
| | | | DEB TACE | | | | | | 9.0 | | 9.0 | 0.776 | 29 | 86.2 | |
| Sacco et al| Randomized controlled trial | Italy | cTACE | 34 | A/B 22/8 | 3.85±1.89 | 1 mo | CR, PR | 70.6 | 0.11 | 12.8 | 0.46 | | 83.6 | 0.96 |
| | | | DEB TACE | | | 4.47±2.68 | | | 51.5 | | 8.9 | | 86.8 | |
| Lammer et al| Randomized controlled trial | European Multicenter | cTACE | 108 | A/B 24/79 | 8.92±5.93 | | | 22.2 | 0.11 | 26.9 | 26.8 | 0.96 | |
| | | | DEB TACE | | | 8.89±5.21 | | | 24.7 | | 11.8 | | | |
| Dhamdherekar et al| Retrospective comparative analysis | US | cTACE | 26 | Okuda III/III | 7.4±4.91 | | | 9.4 (0.284 d) | 58 | 19 | 0.031 |
| | | | DEB TACE | | | 5.49±4.29 | | | 9.4 (0.284 d) | 58 | 19 | 0.031 |

For complete reference information, please see supplementary reference file.

CR indicates complete response; ECOG, The Eastern Cooperative Oncology Group; NS, not significant; PR, partial response; SD, standard deviation.

Median and range.

<|mean ± SD (standard deviation) of total sum of diameter of HCC lesions.*
Several recent advancements have allowed the delivery of higher doses of radiation focally to the tumor, while decreasing exposure to surrounding healthy liver tissue, thereby reducing (although not eliminating) the toxic effects on the liver. This has expanded the role of EBRT in patients with HCC. In general, palliative-intent EBRT is used for symptom control, whereas definitive EBRT is reserved for patients with liver-confined HCC, who are not eligible for or have failed other therapies such as surgical resection and locoregional therapies.66–68 Lastly, EBRT is often combined with other modalities to achieve a better response at tolerable doses and also to minimize the side effects.66–69 Specific types of EBRT are discussed below.

Three-Dimensional conformal radiation therapy (CRT) allows profile shaping of the beam of radiation to match the profile of the tumor. Mathematical models that quantitatively predict dose and volume relationship and the probability of developing RILD have facilitated the treatment planning of CRT.69 Several studies have shown the effectiveness of CRT.69 A more recent modification of CRT, intensity-modulated radiation therapy produces highly conformal dose distributions in the target volumes and minimizes the dose received by adjacent dose-limiting structures and has further improved the outcomes compared with CRT.67,70 Technological advances such as image guidance and breathing motion management have made possible to deliver ablative doses to focal unresectable HCC. Total radiation dose seems to be one of the most important predictors of survival. Potential side effects including nausea/vomiting, fatigue, delayed liver toxicity, gastrointestinal bleeding, edematous-ascitic hepatic decompensation, and RILD have been described. Grade 3 or higher toxicities can occur in 15% to 30% of the patients.69,67 The efficacy of CRT in treating HCC with portal venous thrombosis has been reported. The median OS of this cohort ranges from 4 to 13 mo in recent reports. Response of portal venous tumor thrombosis to RT tends to be slow, but eventual recanalization has been reported.57

Stereotactic Body Radiation Therapy

Stereotactic body radiation therapy (SBRT) involves the use of multiple radiation beam angles, delivered to the tumor with high precision and rapid fall-off doses away from the target. The reported objective responses rates of SBRT are 37% to 90% and 2-year survival ranges from 43% to 82%.69 Complete pathologic responses have also been reported in 14% to 27% of patients. SBRT may be associated with the potential risk of RILD, progression of Child-Pugh class, chest wall toxicity (peripherally located lesions), and biliary toxicity, etc.67 Grade 3 or higher toxicities with SBRT has been reported to be 0 to 40%. The risk of RILD is associated with treatment volume and liver functional status. As previously discussed, the mean liver dosages associated with a 5% risk of classic RILD for HCC range from 28 to 35 Gy in 2 Gy per fraction depending on whether cirrhosis exists or not; however, if the effective liver volume irradiated is less than 25%, a dose above 100 Gy can be given with little risk of RILD. Therefore, keeping treatment target volume low is critical, to ensure sparing of enough residual liver from radiation toxicity. In addition, lower fractional and total doses are recommended for Child-Pugh B when compared with Child-Pugh A to minimize the side effects related to reduced tolerance.69 In recent years, SBRT has been successfully used as a bridge therapy to halt the progression of HCC in patients on liver transplant waiting lists.69 No intraoperative or long-term complications associated with this bridge therapy have been reported. A randomized phase III study of sorafenib versus SBRT followed by sorafenib in hepatocellular carcinoma is currently recruiting (Clinicaltrials.gov NCT01730937).

Proton Beam Radiation Therapy

Charged particle therapy, such as proton therapy, has distinct dosimetric advantages over therapy that utilizes photons, such as CRT, intensity-modulated radiation therapy, and SBRT.66,68,71 Protons release their energy once they slow down after traveling a particular distance, that is, at a specified depth in each tissue; the energy is rapidly delivered over a short distance. This allows the release of high dose energy to the tumor with minimal surrounding tissue toxicity.66–68,71 Recent prospective studies using proton beam radiotherapy in HCC have reported 5-year in-field local control rates of more than 70% and grade 3 or higher toxicity of 0 to 4%.71 Indications for proton beam therapy are evolving. Some experts suggest that patients with nonmetastatic HCC with portal vein invasion, centrally located tumors, tumors not suitable for RFA such as those close to diaphragm or major blood vessels, and locally advanced tumors in Child-Pugh class B and C patients may be suitable for proton beam therapy.71

Systemic Therapy

Patients with metastatic disease or advanced HCC, not suitable for resection, transplantation, or locoregional therapies may be the candidates for systemic treatment. However, the use of such a treatment modality has been limited by the refractory nature of HCC tumors, possible hepatic dysfunction as a treatment complication, and the diversity of patient population. Many recently approved and currently tested systemic therapies, target one or few molecular pathways involved in HCC.62,72 HCC arises from complex molecular processes involving aberrations in multiple signaling pathways, which have been extensively reviewed elsewhere (supplementary Fig. 1, http://link-s.lww.com/SLA/A926). Sorafenib is an oral multikinase inhibitor, which suppresses tumor cell proliferation and angiogenesis. Sorafenib targets VEGFR-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor β, receptor activation factor kinase, and B-Raf. Two double-blinded, randomized placebo controlled phase III trials have shown prolongation of median overall survival in patients treated with sorafenib when compared with the placebo arm.72 Sorafenib HCC Assessment Randomized Protocol (SHARP) trial randomized 602 patients with the primary endpoint of overall survival. Median OS was 10.7 months in the sorafenib group and 7.9 months in the placebo group (Hazard ratio [HR] 0.69, 95% confidence interval [CI], 0.55–0.87, P < 0.001). Median time to radiologic progression was prolonged (sorafenib 5.5 months, placebo 2.8 mo, HR 0.58 [0.45–0.74], P < 0.001), but there was no difference in the median time to symptomatic progression (sorafenib 4.1 mo, placebo 4.9 mo, HR 1.08 [0.88–1.31], P = 0.77). The most common side effects of sorafenib include hand-foot skin reaction, diarrhea, and fatigue. The Asia pacific study was a mirage image trial performed on patients with advanced HCC, who had not received previous systemic therapy and had Child-Pugh class A cirrhosis. The median overall survival in this study was 6.5 months in the sorafenib arm compared with 4.2 months in the placebo arm (HR 0.68 [0.50–0.93], P = 0.014). Although the difference in median survival was small, HR was comparable between the SHARP and Asia-pacific trials (0.69 and 0.68, respectively). The investigators hypothesized that the more advanced disease may be responsible for a poorer median survival in the Asia Pacific trial. In the Asia pacific study, at baseline, more patients had extrahepatic disease, a greater number of hepatic tumors, poorer performance status, hepatitis B virus-associated HCC, and increased levels of AFP compared with the SHARP trial.73 Another hypothesis argues that the etiologic factors of HCC might affect prognosis and influence the responsiveness of HCC to sorafenib.62 These landmark trials serve as the
basis for using sorafenib as the standard of care for patients with advanced HCC. Most patients in the above-stated trials had Child-Pugh class A disease and had bilirubin levels equal to or less than 3 mg/dL, given the potential for hepatotoxicity associated with sorafenib. Management of sorafenib in patients with cirrhosis and liver dysfunction requires special attention to bilirubin levels and dose adjustments according to published guidelines. Sorafenib has been combined with TACE in patients with unresectable HCC. A randomized phase II study evaluated DEB TACE in combination with sorafenib or placebo [Sorafenib or placebo in combination with transarterial chemoembolization (TACE) with doxorubicin-eluting beads (DEB-DOX) for intermediate-stage hepatocellular carcinoma (HCC): Phase II, randomized, double-blind SPACE trial]. The primary end point, median TTP determined by independent reviewers, was identical in the 2 arms: 169 days with sorafenib versus 166 days with placebo. Although the study was formally positive, given the pre-defined exploratory α of 0.15 (HR for TTP, 0.797; 95% CI, 0.588–1.080; P = 0.072), there was no difference in OS (HR, 0.898; 95% CI, 0.606–1.33; P = 0.606–1.33; P = 0.797).55

In the first line setting, several other investigational agents are being tested in clinical studies (supplementary Table 2, http://link. lww.com/SLA/A926). Disappointingly, all of the referenced antiangiogenic phase III trials in the above-mentioned table are negative studies. One last effort in using antiangiogenic therapy for HCC treatment is dependent on combining sorafenib plus doxorubicin. A randomized phase III study of sorafenib plus doxorubicin versus sorafenib (www.clinicaltrials.gov NCT01015833) was recently closed to new patient accrual, as it was found to be unlikely that difference in OS and progression-free survival will be shown between the treatment arms. One more phase III study evaluating levantinib versus sorafenib in the first line setting is underway (www.clinicaltrials.gov NCT01761266).

In the second line setting, that is, after sorafenib failure or intolerance, efforts have been multivariated with focus on approaches other than antiangiogenesis. The one with the most clinical trials underway is c-met inhibition, with 2 phase III trials evaluating cabozatinib (www.clinicaltrials.gov NCT01908426) and tivantinib (www.clinicaltrials.gov NCT01755767) in the second line setting versus placebo. Several other clinical trials in the second line setting include placebo versus ADI-PEG 20, a pegylated arginine deiminase, an arginine degrading enzyme, isolated from Mycoplasma and formulated with polyethylene glycol (www.clinicaltrials.gov NCT01287585), or placebo versus another multit kinase inhibitor, regorafenib (www.clinicaltrials.gov NCT01774344).

SUMMARY

The management of HCC continues to evolve. Resection and transplantation remain the cornerstones of comprehensive curative intent treatment options. Significant advances have been made in the locoregional therapies of HCC, which have become the primary treatment modality for patients not suitable for resection or transplantation. Systemic chemotherapy and radiation therapy play supporting roles with newer drugs and modalities on the horizon. Despite these advances, HCC remains a major cause of cancer-related mortality. Further research is essential to better understand the biology of HCC and enable the development of targeted novel therapies that tackle this lethal cancer and improve patient care.

REFERENCES

